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Process engineers are often faced with the task of 
sizing a pipe for a specific flow. A common
approach to this problem starts with a typical fluid

velocity (e.g., 5 ft/s for a liquid with properties roughly
similar to water). Calculating the pressure drop across a
line sized in this way is a straightforward matter, involv-
ing the friction factor and either the equivalent length or
the sum of resistances to flow (the K values). This calcula-
tion is detailed in many standard references.

However, that is only one of three possible pipe
sizing/flow problems an engineer is likely to encounter.
The other two, which are encountered less commonly, are:

• given a required flow and pressure drop criterion,
what line size is required?

• given a line size and a pressure drop, what flow may
be expected? This is the conceptual inverse of the previous
problem.

The solution of either of these problems typically
requires an iterative approach. This article introduces a
novel approach for the direct (non-iterative) solution of
such problems.

Friction in pipe flow — the classic approach
The Bernoulli equation, also known as the mechanical

energy balance, is the basis for understanding flow in pipes:

The first term, accounting for kinetic energy changes, is
usually small compared to the other four terms, and thus

can be assumed to be negligible. Note that for line sizing
purposes, the envelope for a mechanical energy balance
typically excludes rotating equipment (e.g., a pump or a
turbine) and focuses on the terminal pressure conditions,
elevation changes, and friction losses; the rotating equip-
ment is then sized to meet the conditions derived from this
mechanical energy balance. 

The second term in the energy balance refers to elevation
changes; those are typically defined as part of the conceptu-
al layout of the proposed line. The third term, referring to
the difference in terminal pressures, is also typically defined
as part of the piping layout. This approach focuses on the
fourth term, lwf, the work lost due to friction: 

In this equation, f is the Darcy friction factor:

The Darcy friction factor equals four times the Fanning
friction factor, fFanning. To use the Fanning friction factor,
substitute 4fFanning for f wherever the latter appears. 

The friction factor is a function of both the fluid
Reynolds number, Re = Dvρ/µ, and the relative roughness,
ε/D. The relationship between these quantities and the
friction factor is expressed graphically in a Moody plot, or
mathematically in various empirical relations (e.g., the
Colebrook or Churchill equations). To solve the types of

This article introduces a novel approach to
solving flow and pipe-sizing problems

based on two new dimensionless quantities
that are independent of line size and flow.
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problems considered here, it is necessary to introduce
dimensionless quantities that do not depend on the line
size, D, or the fluid velocity, v.

Eliminating the diameter
Bennett and Myers (1) suggest that a plot or correlation

of the friction factor, f, as a function of Ref1/5 would be
useful in solving for line size if the flowrate and pressure
drop are known. This dimensionless quantity (Ref1/5) is
drawn from two quantities already established, namely, the
Reynolds number and the Darcy friction factor. The veloc-
ity, v, appears in both Re and f. It can be eliminated by
using the definition of the velocity:

Thus, Re = 4Qρ/πDµ and f = [2gc(–∆P) π2D5] /
[16Q2ρL] = [π2gc(–∆P)D5] / [8Q2ρL], which leads to:

The diameter has now been eliminated. But f, and thus
Ref1/5, depends on the relative roughness, which presupposes
knowledge of the pipe diameter. To get around this, a new
dimensionless quantity, the flow function, is introduced:

which can be calculated from known quantities. The
absolute roughness, ε, is a function of the nature of the pipe,
which is known, and is independent of the line diameter.

A complementary dimensionless quantity that eliminates
dependence on the flow is also needed. This has already
been established in the form of the Kármán number, Ka: 

Many texts provide plots of the friction factor as a
function of the Kármán number with the relative rough-
ness as a variable. This may not be particularly helpful,
however, since it presumes knowledge of the pipe diame-

Nomenclature

a, b, c,… = coefficients in correlating polynomial (Eq. 9)
(represented by y in the general case of Eq. 10),
dimensionless 

A, B, C,… = coefficients in generating polynomial (Eq. 10),
dimensionless 

A = pipe cross-sectional area normal to flow, ft2

D = pipe (inside) diameter, ft 
f = Darcy friction factor, dimensionless 
g = acceleration of gravity, 32.174 ft/s2

gc = conversion factor, 32.174 ft-lb/lbforce-s2

Ka = Kármán number (Eq. 7), dimensionless 
lwf = lost work due to friction, ft-lbforce/lb 
L = line equivalent length, ft  
P = pressure, psi or lbforce/ft2

Q = volumetric flowrate, ft2 /s 
Re = Reynolds number, dimensionless 
v = fluid velocity, ft/s 
W = shaft work, ft-lbforce/lb 
W = mass flowrate, lb/s 
y = generic coefficient in correlating polynomial 

(Eq. 9), generated by Eq. 10, dimensionless 
z = elevation, ft

Greek Letters
ε = absolute roughness of pipe, ft 
Φ = friction/roughness function (Eq. 8), dimensionless 
µ = dynamic viscosity, lb/ft-s 
Θ = flow function (Eq. 6), dimensionless 
Θ* = modified flow function = Ref1/5, dimensionless 
ρ = density, lb/ft2
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ter, which may not be the case. To work around this,
another new dimensionless quantity, the friction/roughness
function, is defined:

Guidelines for sizing pipe (e.g., Peters and Timmerhaus
(2)) include typical velocities in the range of 3–10 ft/s for
liquids and 50–150 ft/s for gases. A quick check of Reynolds
numbers calculated using velocities within these ranges and
properties of common industrial liquids (e.g., organic liquids
with viscosities of approximately 1 cP and densities on the
same order of magnitude as that of water) shows that flows
meeting these guidelines are indeed turbulent; similar com-
ments apply for industrial gases. Most design courses guide
the student to design for turbulent flow in pipelines, since
this is perhaps the most common situation in industry.

Thus, it is reasonable to assume full turbulence and, as
a corollary, define a slightly modified version of Φ to use
the fully turbulent Darcy friction factor, fT. This modified
quantity ΦT, is the product of fT1/5 and the relative rough-
ness ε/D. This quantity will prove useful in one of the
variations of the classic flow problem presented later.

For the calculation of flow based on pipe size and pres-
sure drop, values of fT as a function of line size or relative
roughness are tabulated in the literature (3), and are listed
in Tables 1 and 2. 

Now we have a dimensionless quantity, Θ, that is inde-
pendent of line size that can be used to correlate another
dimensionless quantity, Ka. This latter dimensionless
quantity is independent of flow. 

Plotting log Ka as a function of log Θ and ΘT yields a
family of parallel curves. Multiple regression analysis
shows that these curves can be represented by polynomials
with log Θ as the independent variable and the form:

We’ll call this relationship the correlating polynomial. A
cubic polynomial is generally sufficient to correlate log Ka
as a function of log Θ (for reasons that will be discussed
later). Multiple regression analysis shows that a, b, c, d …
are well-correlated by polynomials in log ΦT. Thus:

where y is a generic coefficient for Eq. 9. We’ll call this
relationship the generating polynomial to distinguish it
from the correlating polynomial that relates log Ka to log
Θ. A quartic (fourth-degree) polynomial is sufficiently
accurate for most work. The coefficients A, B, C, D and E
for Eq. 10 are given in Table 3.

Knowing the physical definition of the system (line
[equivalent] length, pressure drop, nature of the pipe), 
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Table 1. Fully turbulent Darcy friction factor 
as a function of line size.

0.5 0.027
0.75 0.025

1 0.023
1.5 0.021
2 0.019
3 0.018

4 0.017
6 0.015

8–10 0.014
12–16 0.013
18–24 0.012

Line Size
(nominal), in. fT

Line Size
(nominal), in. fT

Source: (3).

Table 2. Fully turbulent Darcy friction factor 
as a function of relative roughness.

ε/D fT ε/D fT

Note: These values are calculated from the Churchill relationship for the
friction factor using a Reynolds number contribution of zero.

0.07 0.084201
0.06 0.078021
0.05 0.071551
0.04 0.064671
0.03 0.057174
0.02 0.048637
0.015 0.04369
0.01 0.037904
0.009 0.036588
0.008 0.035197
0.007 0.033714
0.006 0.032116
0.005 0.030367
0.004 0.028416
0.003 0.026165
0.002 0.02342
0.0015 0.021727
0.001 0.019635
0.0009 0.019141
0.0008 0.018611
0.0007 0.018036
0.0006 0.017404
0.0005 0.016699
0.0004 0.015893

0.0003 0.014937
0.0002 0.01373
0.00015 0.01296
0.0001 0.01198
0.00009 0.011743
0.00008 0.011487
0.00007 0.011207
0.00006 0.010896
0.00005 0.010544
0.00004 0.010137
0.00003 0.009645
0.00002 0.009011
0.000015 0.008598
0.00001 0.008063
0.000009 0.007932
0.000008 0.00779
0.000007 0.007633
0.000006 0.007457
0.000005 0.007257
0.000004 0.007023
0.000003 0.006738
0.000002 0.006365
0.0000015 0.006119
0.000001 0.005795

y A B C

D E
T T

T T

= + ( ) + ( )
+ ( ) + ( )

log log

log log

Φ Φ

Φ Φ

2

3 4
100( )

log log log logKa a b c d= + ( ) + ( ) + ( ) + … ( )Θ Θ Θ2 3 9
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the flowrate, and the fluid’s physical properties (density,
viscosity) allows Θ, log Θ, ΦT and log ΦT to be deter-
mined. Log ΦT can be used to calculate the coefficients a,
b, c and d (via Eq. 10) and the tabulated values for A, B,
C, D and E, which are used with Eq. 9 to yield log Ka and
therefore Ka. Finally, knowing Ka leads directly to a theo-
retical line size:

It is unlikely that the diameter calculated in this way
will be equal to a commercial pipe size. In most cases, the
pressure drop specification is a maximum allowable pres-
sure drop, so the next larger pipe size should be chosen.
(Conversely, if a minimum pressure drop were specified,
the next smaller line size would be chosen.)

Example 1
A refinery needs to move 60,000 bbl/d (1,750 gal/min)

of a product with an API specific gravity of 30 (approxi-
mately 54.7 lb/ft3) and a viscosity of 1.8 cP. The pressure 
at the new tie-in point (i.e., the source) for this new line is

90 psig. Due to the design of existing
equipment, the discharge pressure down-
stream cannot exceed 15 psig. The pro-
posed line routing (approximately 12,000
equivalent ft, accounting for fittings) is
essentially flat. Refinery specifications call

for carbon steel pipe to be used. What size pipe is needed?
Solution. The data for the problem are given in Table 4.

The calculations are detailed in the box on the next page.
1. Calculate Θ using Eq. 6, and then log Θ. Θ = 9.562,

log Θ = 0.9805.
2. Calculate Φ using Eq. 8, and then log Φ. Φ = 12,511,

log Φ = 4.0973.
3. Use the generating polynomial, Eq. 10, to get coeffi-

cients for the Ka-Θ relationship (for simplicity, use 
the quadratic form). These coefficients are a = 3.5707, b =
1.0363, and c = –0.00058.

4. Use these coefficients in Eq. 9 and the value of Θ
calculated in Step 1 to generate Ka: log Ka = 3.5707 
+ (1.0363)(0.9805) + (–0.00058)(0.9805)2 = 4.5862. 
So, Ka = 38,569.89054.

5. Solve for D using Eq. 11. D = 0.882 ft = 10.589 in.
Since a minimum pressure drop was specified, the

next-smaller commercially available line size would be
chosen to ensure that this minimum drop criterion is met.
Thus, a 10-in. line (actual ID = 10.02 in. for Sch. 40 pipe)
should be selected.

Estimating flow
This approach can also be used to calculate the expect-

ed flow through a pipe of a specified size with a known
pressure drop. The terms used to calculate Ka (and thus
log Ka) are known. Again fully turbulent flow is assumed,
since that is common in industry. Then ε/D can be calcu-
lated based on the known line size and the nature of the
pipe, and fT can be obtained from the tabulated values as
mentioned previously. That allows ΦT to be calculated, as
well as the coefficients a, b, c and d for the correlating
polynomial relating log Ka to log Θ.
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Table 3. Generating polynomial coefficients 
(for use in calculating correlating polynomial coefficients). 

A B C D E 

Quadratic
a –0.17163319 0.86401247 0.02040069 –0.00265645 0.00015052
b 1.02119400 –0.01740500 0.00185105 0.00005060 –0.00000845
c –0.00121903 0.00082246 0.00002517 –000000668 –0.00000046

Cubic
a –0.30973737 1.04093058 –0.05082539 0.00973526 –0.00048466
b 1.10906642 –0.11763886 0.03482046 –0.00418687 0.00018018
c –0.01381511 0.01267707 –0.00223295 0.00004726 00000891
d 0.00042345 –0.00022592 –0.00008810 0.00003103 –0.00000224

Correlating polynomial coefficients, smooth pipe

Quadratic a b c
–0.0920095 0.8881693 0.0046269

Cubic a b c d
0.09043103 0.79275882 0.01945720 –0.00070362

Table 4. Data for Example 1.

Given Data
Density, ρ = 54.7 lb/ft3

Viscosity, µ = 1.8 cP
Line Length, L = 12,000 ft 
Flowrate, Q = 1,750 gal/min 
Absolute Roughness, ε = 0.00015 ft (3)

Derived Data
Pressure Drop Between Tie-In Point 
and Maximum Downstream Terminal
Pressure, –∆P = 75 psi 

Article continues on next page
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This new approach uses the fully turbulent friction fac-
tor for a given line size as a contributing parameter to the
generating equation (Eq. 10). The results of the generating
equation are ultimately employed to get a value of Θ and
thus the flow. One could then re-evaluate the friction fac-
tor based on this flow and the known line size and use the
generating equation again, but it’s up to the user to evalu-
ate whether this would have practical value.

In the traditional approach (specifying physical proper-
ties and terminal conditions), one may calculate flow
directly by postulating complete turbulence in addition to
the known constraints (pressure drop, line length, physical
properties). In that case, it is necessary to verify that the
calculated flow does indeed yield a Reynolds number that
qualifies as fully turbulent. Again, further refinement by
iteration would be at the user’s discretion.

It was suggested previously that a cubic polynomial
should suffice to relate log Ka to log Θ, based on the
observation that a cubic polynomial is the highest order
equation that can relatively easily be solved analytically. (It
is possible to solve a quartic polynomial analytically, but
the solution is considerably more involved than solving a
cubic polynomial. There is no general analytic solution for
higher-order polynomials — and it’s unlikely that there
would be much, if any, benefit to using one.) Methods of
solving cubic and quadratic equations are described in
detail at http://mathworld.wolfram.com (4). 

Of the three roots arising from the solution of a cubic
equation, only one is of interest. Values of log ? within the
scope of this correlation fall within the approximate range
of –3.5 ≤ log Θ ≤ 7.5.

With log Θ and thus Θ known, a flowrate can be found
by solving Eq. 6:

Example 2
Chilled water at 45°F flows from a constant-level reser-

voir through a 2-in. Sch. 40 steel pipe, the end of which is
open to the atmosphere. The pipe has an equivalent length
of 175 ft, and the outlet is 35 ft below the liquid level in
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the reservoir. Neglecting any kinetic energy contributions,
determine the flow.

Solution. The data for this problem appear in Table 5. In
the interest of space, the calculations are not detailed here.

1. Using Eq. 7, calculate Ka = 16,801.2. Then, 
log Ka = 4.2253.

2. Since the nature of the pipe and the line size are
known, ε/D, as well as the fully turbulent friction factor
for that relative roughness, are also known. Therefore, Φ
is obtained from its definition, Eq. 8: Φ = [f1/5(ε/D)]–1 =
2,536.981. So, log Φ = 3.404317.

3. Use Φ and the generating polynomial (Eq. 10) to cal-
culate the coefficients a, b and c of the correlating polyno-
mial (Eq. 9). For the purpose of illustration, use a quadrat-
ic generating polynomial. Thus: a = 2.9216, b = 0.970,
and c = 0.002223. 

4. Solve the quadratic correlating polynomial for Θ:

where β = b = 0.970, γ = a – log Ka = –1.3034, α = c =
0.002223. Thus, x = log Θ = 1.340 and –437.766. The first
root reflects the use of the positive sign of the radical; the
second root, the negative sign. Only the first root has any
physical significance, so with log Θ = 1.340, Θ = 21.878.

5. Use Eq. 12 to derive the flowrate: Q =  0.259 ft3/s =
116.4 gal/min.

The special case of smooth pipe
By definition, smooth pipe has zero roughness, which

would render the definition of Θ useless. However,
Gilmont’s work (5) can be modified to correlate Ka as a
function of Θ*, where Θ* = Ref1/5, to obtain a relation-
ship where one variable is independent of the line size
and the other is independent of the flowrate. Like the 
Θ-Ka correlation, this Θ*-Ka correlation can be repre-
sented well by a cubic polynomial. Therefore, the tech-

niques discussed above for rough pipe can be applied to
smooth pipe using the data at the bottom of Table 3 and
the relationship in Figure 1. 

A final note
Line sizing is not exact or rigorous, since it involves

discrete standard commercial sizes rather than values of a
continuous function. Calculations may indicate that a pipe
diameter of, say, 5.4 in., is required to accommodate a
given flow, but that’s simply the solution to an equation.
Rather, one chooses the closest commercial size to suit the
application based on the theoretical results of calculations,
engineering judgment, and experience.
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� Figure 1. Kármán number as a function of Q* for smooth 
pipe (ε = 0).
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Table 5. Data for Example 2.

Given Data

Density, ρ = 62.42 lb/ft3

Viscosity, µ = 1.417 cP
Line Length, L = 175 ft 
Pipe ID, D = 2.067 in. 
Absolute Roughness, ε = 0.00015 ft (3)

Derived Data

Head Change, –∆P = 35 ft liquid = 15.15 psi
Relative Roughness, ε/D = 0.000871
Fully Turbulent Darcy Friction Factor, fT = 0.019 (3)


